

D.3.4 PROOF-OF-CONCEPT CASE TOOL

Michela Angeli (UNITN), Karmel Bekoutou (UNITN), Gábor
Bergmann (BME), Elisa Chiarani (UNITN), Olivier Delande (THA),
Edith Felix (THA), Fabio Massacci (UNITN), Bashar Nuseibeh (OU),
Federica Paci (UNITN), Thein Tun (OU), Dániel Varró (BME), Koen
Yskout (KUL), Yijun Yu (OU)

Document information

Document Number D.3.4

Document Title Proof-of-Concept CASE Tool

Version 2.12

Status Final

Work Package WP 3

Deliverable Type Prototype

Contractual Date of Delivery 31 January 2012

Actual Date of Delivery 26 January 2012

Responsible Unit BME

Contributors OU, UNITN, BME, THA

Keyword List
requirements evolution, argumentation, evolution
rules,

Dissemination level PU

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 2/47

Document change record

Version Date Status Author (Unit) Description

0.1 7 September 2011 Draft
Gábor
Bergmann
(BME)

First Draft based on
original Tool Readme

0.1
15 December
2010

Draft
Federica Paci
(UNITN)

First Draft of Demo
Scenario

0.2
17 December
2010

Draft
Gábor
Bergmann
(BME)

Started the executive
summary.

Elaborated details of each
demo script, except for
the argumentation

Started Technical
Overview

0.3
23 December
2010

Draft
Gábor
Bergmann
(BME)

Completed the executive
summary.

Improved demo scripts,
added argumentation;
attached screenshots

Resolved issues raised
before and during WP3
telephone conference

Added Transformation to
Technical Overview

Added References

0.4
23 December
2010

Draft
Dániel Varró
(BME)

Revised the executive
summary.

0.5
24 December
2010

Draft
Gábor
Bergmann
(BME)

Added explanatory
Figure to Section 2.

0.6 28 December Draft Gábor
Bergmann

Added Figure to Ex.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 3/47

2010 (BME) Summary.

0.7 12 January 2011 Draft
Karmel
Bekoutou
(UNITN)

Quality check completed-
minor remarks

0.9 13 January 2011
Revised
Draft

Gábor
Bergmann
(BME)

Updated Scenario
descriptions to match
reviewer comments.

1.0 14 January 2011
Revised
Draft

Gábor
Bergmann
(BME)

Addressed all minor
remarks

1.1 19 January 2011 Final
Gábor
Bergmann
(BME)

Modified future
integrations plans in
Executive summary,
according to discussions
in the General Assembly.

1.2 20 January 2011 Final
Gábor
Bergmann
(BME)

Fixed authors list.

2.0
07 December
2011

Y3
Draft

Gábor
Bergmann
(BME)

Integrated tool manual,
added shift to Y3

2.1
19 December
2011

Y3
Draft

Gábor
Bergmann
(BME)

Restructured according
to instructions from
Fabio, moved to new
Demo Corner example

2.2
20 December
2011

Y3
Draft

Federica Paci
(UNITN)

Rephrased Exec.
Summary, updated
integration details

2.3
20 December
2011

Y3
Draft

Gábor
Bergmann
(BME)

Final touches

2.4
28 December
2011

Y3
Draft

Michela
Angeli
(UNITN)

first quality check
completed-minor
remarks

2.5 4 January 2012 Y3 Koen Yskout Y3 Scientific review (first

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 4/47

Draft (KUL) round)

2.6 16 January 2012
Y3
Draft

Gábor
Bergmann
(BME)

Addressing comments of
internal review

2.7 19 January 2012
Y3
Draft

Koen Yskout
(KUL)

Y3 Scientific review
(second round)

2.8 19 January 2012
Y3
Draft

Michela
Angeli
(UNITN)

second quality check
completed-minor
remarks

2.9 23 January 2012
Y3
Draft

Olivier
Delande,
Jérôme Le
Noir (BME)

Contributing industrial
evaluation of EMF-
INCQUERY

2.10 26 January 2012 Final
Gábor
Bergmann
(THA)

Addressing comments of
second internal review

2.11 26 January 2012 Final
Michela
Angeli
(UNITN)

Third quality check
completed-minor
remarks

2.12 26 January 2012 Final
Gábor
Bergmann
(THA)

Addressing comments of
third internal QC,
finalizing URLs

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 5/47

Executive summary

This document is the description of the WP3 CASE tool prototype that was built to
demonstrate the concepts and workflow of SeCMER, the SecureChange Methodology
of Evolutionary Requirements.

The demonstrator is an Eclipse-based heterogeneous modeling environment for
evolving requirements models that are formulated in different languages appropriate for
different work phases and domain expertise. It also provides an analysis toolset to
conduct interactive or automated, formal and informal security analysis. Deliverable
D.3.4 consists of two components: a software prototype (called SeCMER
Demonstrator) and this document that presents the research results, the demonstrator
architecture and a sample case study.

The main results presented in the demonstrator (and thus in the current document) are
the following:

 Multi-aspect modeling approach where the security requirements model is
composed of several views in different modeling languages, and each work
phase can use the facet of the model that is most appropriate to represent their
tasks and domain expertise. To cope with the evolving nature of the model,
changes made to any of the view models can be incrementally synchronized
to all other views where appropriate using change-driven transformations.

 Automated pattern-based analysis for certain security properties. This
analysis is resilient to change and the results are continuously and
incrementally kept up-to-date.

 Interactive and formal argumentation analysis to support security experts in
conducting arguments to verify security properties. Taking up the challenge of
evolving models, these argumentation features are complemented by partially
automated strategies to cope with changes to the requirements model.

During Year 3, we have explored the relationship between SeCMER and CORAS. We
have mapped concepts in SeCMER and CORAS conceptual models that are used to
represent assets that are critical for the achievement of organization's strategic
objectives and means to protect assets in a cost-effective manner. The mappings have
been expressed as VIATRA2 graph transformation rules. Due to being developed as
one of the last results of the project, there was no time to integrate the mappings into
the demonstrator to support synchronization between SeCMER and CORAS models
under change; but this is of little consequence, since the prototype tool has already
demonstrated the feasibility of similar model transformations.

We have also investigated the role that SeCMER methodology and tool can have in the
industrial security process proposed by Thales as described in Appendix G. As for the
EMF-INCQUERY component in particular, Thales has conducted an initial evaluation in
an industrial context, as documented in Appendix C.

In addition to these activities, WP3 collaborated with Deep Blue to validate both
artifacts and also the tool by the tentative application of the tool to the ATM Case Study
for the collection, modeling and analysis of the evolution of security requirements in a

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 6/47

real industrial context and a final an evaluation workshop with ATM experts. The
feedback from ATM experts is analyzed in detail in Appendix D.

The workshop feedback contributed to the improvement of the tool. Numerous changes
were made to the tool at the request of the ATM experts, such as a customization of
the Si* User Interface to fit SeCMER concepts and workflow. The changes include the
following:

 an improved Graphical User Interface, with user-friendly features including
wizards and export / import functionality;

 a customized adaptation of the Si* diagram features to be more aligned with
SeCMER concepts;

 an extended mapping between Si* and SeCMER to enable Si*-based modeling
for all of the concepts involved in the Year 2 and Year 3 demonstration
scenarios;

 added new Security Patterns to cover more security issues, including violations
of the least privilege principle;

 added support for generating a dynamic list of quick fixes for a single security
violation;

 miscellaneous bug fixes.

The structure of the deliverable document is the following:

 The prototype tool is briefly introduced in Section 1.

 A walkthrough of some important features is presented in Section 2, in context
of the ATM case study.

 Section 3 includes further discussion of the background, limitations and future
of the SeCMER tool.

 Design and implementation details are provided in Appendix A.

 The User’s Guide for the SeCMER tool is located in Appendix B.

 A report written by Thales of the initial industrial evaluation of the underlying
technology EMF-INCQUERY is included as Appendix C

 The results of the workshop with ATM experts are reported in Appendix D.

 Scientific publications related to the SeCMER tool are attached as Appendix E,
Appendix F and Appendix G.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 7/47

Table of Contents

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 5

TABLE OF CONTENTS 7

LIST OF FIGURES 9

1 INTRODUCTION 10

2 FEATURE TOUR 12

2.1 Example Scenario from the ATM domain 12
2.1.1 Change Requirements (Organizational Level) 12
2.1.2 Security Properties (Need-to-Know principle) 12
2.1.3 User Story 13

2.2 Overview of demonstrated use cases 13

2.3 Synchronization between models in different requirements formalisms 14

2.4 Detection of a violation of least privilege principle and automatic corrective
action based on evolution rules 20

2.5 Argumentation for the information access property 21

3 DISCUSSION 24

3.1 Related Work 24

3.2 Known Technical Limitations 24

3.3 Foreseen Desirable Improvements 25

3.4 Conclusions 25

REFERENCES 26

APPENDIX A. TOOL REALIZATION 27

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 8/47

APPENDIX B. USER MANUAL 32

APPENDIX C. REPORT ON INITIAL INDUSTRIAL EVALUATION OF THE
EMF-INCQUERY TOOL 40

APPENDIX D. REPORT ON SECOND ATM WORKSHOP 44

APPENDIX E. A TOOL FOR MANAGING EVOLVING SECURITY
REQUIREMENTS 45

APPENDIX F. SECMER: A TOOL TO GAIN CONTROL OF SECURITY
REQUIREMENTS EVOLUTION 46

APPENDIX G. ORCHESTRATING SECURITY AND SYSTEM
ENGINEERING FOR EVOLVING SYSTEMS 47

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 9/47

List of Figures

Figure 1. Evolution pre-state in abstract SeCMER model (extract) 15

Figure 2. Evolution pre-state on Si* diagram ... 16

Figure 3. Post-state in abstract SeCMER model (extract, changes marked) 18

Figure 4. Evolution post-state on Si* diagram (changes marked)............................ 19

Figure 5. Detected security issues .. 21

Figure 6. Automatic solutions suggested by evolution rules 21

Figure 7. A fragment of an argument model ... 23

Figure 8. Architectural overview of model management components 28

Figure 9. Tree editor of the abstract model ... 35

Figure 10. Si* diagram on the "Tropos" tab .. 35

Figure 11. Argument diagram on the “Argument” tab .. 36

Figure 12. New SeCMER Model wizards... 37

Figure 13. Detected security issues ... 38

Figure 14. Automatically suggested solutions ... 38

Figure 15. Selecting ground facts for Argument F10 ... 39

Figure 16. Detecting the invalidation of an argument .. 39

Figure 17. EMF-INCQUERY consistency rules... 42

Figure 18. Thales SWOT analysis of EMF-INCQUERY ... 43

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 10/47

1 Introduction

The goal of the SeCMER tool is to support the Requirement Engineers in following the
SeCMER methodology. The recommended way to capture a Requirements Model is in
the Si* formalism, although other languages are supported as well. The requirements
model can then undergo automated, pattern-based static analysis and manual,
informal argumentation analysis to discover security issues.

The tool provides basic viewing and editing functionality to the integrated aspect
models (Si*, abstract SeCMER model and Argument model currently). The basic
modeling functionality includes the following:

 Using the Si* / Tropos visual language to identify e.g. stakeholders, resources
provided, actions performed, functional and security goals stated and met,
decomposition, input / output dependencies of actions or goals, trust between
stakeholders and finally delegation of duties or access.

 Recording arguments carried out by security experts that identify security
liabilities and problems. Also modeling the break down structure of arguments,
the interrelation with counter-arguments (rebuttals, mitigations), and the back-
tracing of elementary facts to concepts in the requirements model.

Additionally, the following added-value mechanisms are implemented:

 There is on-the-fly bi-directional synchronization between the SeCMER and Si*
representation of requirement models. This means that the same requirements
model is always represented as a visual Si*/Tropos diagram, and also as a
more abstract underlying SeCMER model.

o Changes made in the abstract EMF representations (like the tree editor
and the GMF Tropos Diagram) are transformed and synchronized
between the SeCMER and Si* aspects on the fly.

o Textual formats (like the .ontology format of the SeCMER requirement
model) are more detached: updates to and from them are only
propagated upon saving. This is due to technical constraints in the
prototype.

o Problem Frames (OpenPF) models can be unidirectionally transformed
into the .ontology format.

 An automated static security analysis considers a class of security problems
that are defined by an extensible set of security patterns1. Each security

1 Not to be confused with the notion of „security pattern” as in security-aware architecture/design
patterns. Security patterns in context of SeCMER are patterns in the sense of pattern matching. In
analogy to the terminology of design patterns, these security patterns would be considered anti-
patterns.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 11/47

pattern is a graph pattern or model query that identifies parts in the model that
violate a given security property. The analysis is performed by Evolution Rules
that detect violations of the given security properties and offer automated
solutions. Violations appear as Eclipse problem markers (warnings). The
suggested solutions appear as Quick Fix rules. The initial set of security
patterns provided in the prototype are chosen according to these guidelines:

o The main points of focus are trust (which can be explicitly modeled, and
interpreted transitively), access (which can also be granted / delegated
transitively), and need (expressed by carrying out an action that
consumes a resource).

o The security patterns only consider assets that are protected by security
goals. If a resource is not a valuable asset, then no distracting problem
reports will be generated e.g. in case of untrusted access.

o Security violation reports can be suppressed by manual arguments
supporting the satisfaction of the security goal.

The security patterns detect the following problems:

o If there is access to an asset without trust (regardless of need), then it is
considered a violation of the trusted path property.

o If there is access to an asset without the need thereof (regardless of
trust), then it is considered a violation of the least privilege property.

o If there is need for an asset but no actual access, then the model is
reported as inconsistent / incomplete.

 Traceability links can be established between the argument and requirement
models. They enable automatic detection of requirement changes that make a
manually conducted argument obsolete. Model changes involving the ground
facts may trigger a notification that alerts the user about the possibility that the
argument may have become invalid due to the change. The security experts
can then revisit these arguments to reflect the evolution, while no costly revision
process is required for unaffected arguments.

The tool is designed to be extensible. Apart from the SeCMER requirements model,
the Si* model and arguments, additional aspect models can also be joined in the
future. There can be one-directional transformations, such as the one between
OpenPF requirement models and SeCMER. However, the tool provides support for
traceability maintenance (as in the case of arguments), and a framework for
bidirectional live synchronization (demonstrated in the prototype tool by the SeCMER

 Si* mapping).

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 12/47

2 Feature Tour

We are going to illustrate a subset of features supported by WP3 CASE tool prototype
using the Air Traffic Management (ATM) case study. The ATM case study will be used
during the whole tour since it features requirements-based early security analysis.

2.1 Example Scenario from the ATM domain

This Section follows the common Demo Script of the ATM-oriented Work Packages of
SecureChange.

2.1.1 Change Requirements (Organizational Level)

The introduction of the Arrival Management subsystem (AMAN) affects Controller
Working Positions (CWPs) as well as the Area Control Center (ACC) environment as a
whole. The main foreseen change in the ACC from an operational and organizational
point of view is the automation of tasks (i.e. the usage of the AMAN for the computation
of the Arrival Sequence) that in advance were carried out by Air Traffic Controllers
(ATCOs), a major involvement of the ATCOs of the upstream Sectors in the
management of the inbound traffic.

Goal: The ATCO system interfaces that provide access to actors with various roles and
authorizations need to make information available only to authorized personnel or
trusted systems, on a need-to-know basis.

2.1.2 Security Properties (Need-to-Know principle)

It is necessary to guarantee specific security properties after the deployment of the
identified changes requirements. In particular, an operational need-to-know principle
can be defined in terms of the following security properties:

Information Access. Authorized actors (or systems) must have access to confidential
information regarding queue management in the terminal area. Access to information
needs to comply with specific role-based access control rules drawn from the
operational requirements.

Information Protection. Unauthorized actors (or systems) are not allowed to access
confidential queue management information.

Information Need. Confidential queue management information can be accessed by
authorized actors (or systems) only when the information is necessary for operational
purposes, which may vary even in real time, due to particular conditions (bad weather,
emergency status, etc.).

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 13/47

2.1.3 User Story

A new Arrival Management subsystem (AMAN) is introduced in the air traffic control
system. Among other duties, the AMAN schedules the arrival of a State Flight, which is
a highly sensitive flight with high-ranking state officials on board. Because of the unified
electronic representation of flights required by AMAN, information regarding the State
Flight must be handled by the ACC systems as part of the Flight Data in the after
scenario.

ATCOs that are currently on duty in the ACC control room are aware of this sensitive
information and take that into account while working on their sectors. The ATCO
supervisor, among other goals, is responsible for the security of confidential
information. Each operation CWP shows any relevant information about the flights. It is
necessary to guarantee that confidential information becomes available to actors
operating inside and outside the ACC control room only when information is necessary
for achieving their operational goals. For instance, an external contractor’s System
Engineer who is authorized to access the control room and a CWP to perform system
maintenance should not be allowed to access confidential information such as the
State Flight.

The AMAN is linked to the information communication network that makes scheduled
flight information available to other services. However, it is necessary to prevent the
confidential State Flight information from becoming available to other actors operating
outside the ACC control room. Therefore, actors like Service Engineers, who might
provide services on ground, are allowed to access only non-confidential information
about the State Flight.

2.2 Overview of demonstrated use cases

The audience of the tour will be able to see the following scenario steps, each of which
is supported by the tool: The steps of the tour were chosen such that they follow a
typical requirements evolution workflow, also featuring the contributions of WP3.

1) Synchronization between models in different requirements formalisms.
We will illustrate that correspondence in the before state is preserved
automatically in the after state, e.g. how the addition of a new actor “AMAN” in
the SI* model showcasing the organizational level change (see Section 2.1.1) is
reflected on the SeCMER model.

2) Detection of a violation of information protection (confidentiality in
particular) and automatic corrective action based on evolution rules. We
will show how the least privilege principle is violated for State Flight Info in the
post-state (after state) SeCMER model because there is a security goal
“Confidentiality of State Flight Info” protecting the asset State Flight Info; where
the actor System Engineer has access to State Flight Info (as it is contained in
Flight Data in the after state, which in turn is available via CWP), even though it
does not require the asset for performing its operational duty. This step invokes
an evolution rule where the event and condition represent a pattern matching
such a situation, and where the action part suggests a corrective action (e.g.
adding to the model a potential missing action that is performed by the System
Engineer and consumes the asset).

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 14/47

3) Argumentation for the least privilege (need-to-know) property. We will
show how argumentation analysis [5] can be carried out for the access control
property applied to the Flight Data.

2.3 Synchronization between models in different
requirements formalisms

According to SeCMER, a single requirement model can be composed of views in
multiple modeling languages, based on the expertise of requirements engineers and
the domain-specific style of modeling. The challenge lies in preserving consistency
while correctly mapping modifications in a (source) modeling formalism to incremental
changes in another (target) modeling language, especially on-the-fly as the
modifications are being made. The following is a demonstration of incremental
synchronization between views of the requirement model in different formalisms. The
concept is demonstrated by the transformation between Si* and the SeCMER
conceptual model in the ATM case study.

Initially, the two views in the model are consistent, reflecting the same model (the pre-
state). See Figure 1 for an extract of the abstract SeCMER model and Figure 2 for its
Si* visualisation. In this state, the actors include ACC Supervisor, Tactical Controller
(TCC), ACC System Administrator, Planner Controller (PLC) and the System Engineer.
The actors handle data resources including Flight Data (which aggregates Speed and
other kinds of data), Meteo Data, etc., as well as the physical resource CWP
(containing CWP Software and data resources), and delegate these to each other.
These data resources are used as inputs of various actions and operational goals
performed by the actors, such as the operation goal “Arrivals sequenced” or the action
“Perform Maintenance on CWP”. The Actor ACC Supervisor also has a Security Goal
“Confidentiality”, which entails the protection of the sensitive asset State Flight Info. All
shown actors are trusted to comply with this Security Goal.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 15/47

Figure 1. Evolution pre-state in abstract SeCMER model (extract)

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 16/47

Figure 2. Evolution pre-state on Si* diagram

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 17/47

Then the change described in Section 2.1 occurs, and following editing actions are
performed:

 The new Actor “AMAN” is created in the SeCMER model. The respective Actor
immediately appears in the Si* diagram.

 On the other hand, in the Si* diagram a composition relationship is established
to express that State Flight Info is now part of Flight Data. This makes some
other edges unnecessary that represented the fact that State Flight Info is used
to fulfill some goals (which is now implied by the containment in Flight Data);
these connections are then deleted. The new or deleted relationships are
immediately propagated to the abstract SeCMER model.

 Likewise, resource delegations and trust relationships targeting AMAN are
created in the Si* diagram; these new connections will all immediately appear in
the SeCMER model as well. The most important one expresses that AMAN is
trusted with the “Confidentiality” Security Goal.

See Figure 3 and Figure 4 for the post-state of the model.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 18/47

 Figure 3. Post-state in abstract SeCMER model (extract, changes marked)

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 19/47

Figure 4. Evolution post-state on Si* diagram (changes marked)

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 20/47

2.4 Detection of a violation of least privilege
principle and automatic corrective action based on
evolution rules

Some security properties can be effectively evaluated or approximated based on the
requirements model in a completely automated fashion. It is also possible to suggest
default solutions. SeCMER includes the language of Evolution Rules, providing a
declarative guard that can detect undesired situations and the possibility to include
actions.

The following is a demonstration of on-the-fly evaluation of security properties and
offering automated corrections using Evolution Rules.

Actor ACC Supervisor provides State Flight Info and wants to have its confidentiality
preserved.

In the post-state, the asset forms a part of the aggregate Flight Data, which is
accessible to various Control Room actors (e.g. via CWP), eventually including the
System Engineer. Although System Engineer is trusted by the ACC Supervisor with
the confidentiality security goal, there is no actual need for the former to have access
to State Flight Info (as CWP maintenance only requires access to CWP Software, not
the whole CWP containing valuable data assets). The tool marks this as a security
violation of the least privilege principle (see Figure 5).

Automatic reactions (quick fixes) are also provided for this security pattern. Candidate
solutions (see Figure 6) are automatically offered for each of the violations. In this
case, the System Engineer only receives State Flight Info as part of Flight Data, so the
only automatically offered solution is to add an action that expresses a procedure for
which the System Engineer actually needs State Flight Info.

However rich the set of pre-defined quick fixes may be, there is always a possibility
that the user chooses a solution that was not offered automatically. (See D.3.3 for
research into generating potential solutions that were not defined a priori, and
inductively learning the choices of the user.) In the example scenario, an alternative
solution is to make sure that the System Engineer only receives those resources that it
actually needs to perform its operational duties. In the current example, it may receive
access to CWP Software, while not having access to the whole CWP, which would in
turn provide access to the aggregate Flight Data (and therefore to State Flight Info).

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 21/47

Figure 5. Detected security issues

Figure 6. Automatic solutions suggested by evolution rules

2.5 Argumentation for the information access
property

The scenario fragment we are going to consider is access of State Flight Info by the
System Engineer via the enclosing Flight Data aggregate object, focusing on how to
enforce confidentiality policies on State Flight Info. Arguments will be conducted for the
security goal of preventing leaks of State Flight Info.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 22/47

 Based on the requirements model, the facts that can be used for argumentation
are initialized.

 Argumentation experts build the argument to support the claim that the system
is secure. Counter-arguments (rebuttals) can be voiced, as well as mitigations
for rebuttals, ad infinitum.

 Assuming that an initial argument existed in the pre-state, the effects of
changes can also be represented as Round #2 rebuttals to facts. This means
expanding the argument model with new arguments (marked as Round #2) that
rebut or mitigate Round #1 arguments and facts. This chain of reasoning can
continue onwards to Round #3 etc., signifying either subsequent changes or
increasing depth of analysis.

 A traceability feature can track two kinds of links from arguments to elements of
the requirements model:

o An argument can be marked to support goals. The point of maintaining
traceability of supported goals is that reports of security violations are
suppressed if the violated security goal is supported by an argument. In
other words, automatic problem detection is overridable by manually
verified arguments.

o Arguments, especially facts, can be linked to elements (ground facts) in
the requirements model that they trace back to. This addresses the
challenge in detecting arguments that have potentially been invalidated
by changes to the requirements model. The benefit is that these
arguments can be revisited to reflect the evolution, while no costly
revision process is required for unaffected arguments. This is the
purpose of keeping the traceability information on ground facts, so that
model changes involving the ground facts may trigger a notification that
alerts the user about the possibility that the argument may have become
invalid due to the change.

The resulting Argumentation model is visualized in Figure 7. The diagram says that the
State Flight Data is claimed to be confidential before the change (Round #1), and the
claim is warranted by be the facts the ATCOs are known to have access to the flight
data (F1), they reside in the Control Room (F2), etc. This argument is rebutted in
Round #2, in which another argument claims that the system is no longer secure
because Maintenance Engineers have superfluous access to State Flight Data. The
rebuttal argument could be mitigated in Round #3 by further arguments.

Arguments like this can help the security engineers discover relevant Actors missing
from the requirements model. In this case, Service Engineers were not included in the
requirement model, but they were relevant for the security of State Flight Info. A
possible next step could be to include this Actor to the requirements model as well.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 23/47

Figure 7. A fragment of an argument model

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 24/47

3 Discussion

3.1 Related Work

There are many requirement engineering tools available but only some of them support
specific capabilities for requirement change management. CASE Spec [6] makes it
easy to generate traceability reports and perform impact analysis with built-in visual
and tabular traceability tools. Dimensions RM [7] allows enterprises to effectively
manage change in requirements during the project lifecycle. In particular, Dimensions
RM facilitates the understanding of the impact of requirement changes and the creation
of reports on requirements definition, baselines, change impact, and traceability. IBM
Rational DOORS [8] has powerful capabilities for capturing, linking, analyzing and
managing changes to requirements and their traceability. IBM Rational RequisitePro [9]
is a requirements management tool that incorporates a powerful database
infrastructure to facilitate requirements organization, integration, traceability and
analysis. Moreover, it provides detailed traceability views that display parent/child
relationships and shows requirements that may be affected by upstream or
downstream changes. MKS Integrity 2009 [10] provides reuse and requirements
change management capabilities coupled with meaningful (and traceable) relationships
to downstream code and testing assets, which ensure communication of change,
conformance to requirements and compliance with applicable governance or
regulations.

Reqtify [11] is an interactive requirement traceability and impact analysis tool which
can trace requirement from system, program and project levels to the entire levels of
software or hardware component development lifecycle.

Compared with the above tools, SeCMER provides support to the requirement
engineer for handling security related changes. The tool supports automatic detection
of requirement changes that lead to violation of security properties using change-driven
transformations and suggests possible corrective actions. The tool also supports
argumentation analysis to check security properties are preserved by evolution and to
identify new security properties that should be taken into account.

3.2 Known Technical Limitations

Unfortunately, there are a number of minor technical problems that have not yet been
solved. None of these are blocker issues, and they do not interfere with the tool
fulfilling its role as a prototype of several concepts and techniques developed in WP3.

Since to the composite model consists of multiple aspect models stored in separate
files, the whole bundle of files makes up a single SeCMER model, and must be
handled together as a unit. In particular, saving a copy of the model cannot be
achieved by the “Save As…” command; it instead requires copying the entire folder of
files together.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 25/47

Due to the way the syntax grammar of the .ontology textual file format is currently
defined, it does not support model elements with names containing spaces. An export
to the .ontology format will only be successful if all SeCMER model elements have
single-word names.

Since the SeCMER tool itself is an integration of several separate tools, undesirable
interference between the various components may be observable in some
circumstances; while great effort was exerted in this area, some of the sources of
conflicts have not been isolated and resolved up to now. These issues usually manifest
themselves as harmless messages in the Eclipse Log. In some cases they may
emerge as user-facing error dialogs, but they are not known to actually impede work.

As an additional glitch caused by conflicts between the integrated components, the
“dirty” (i.e. containing saveable changes) status of SeCMER editors may be incorrect in
some circumstances. If the editor fails to show the dirty asterisk (*) in its name and
does not let the user save the model, one can reinstate the “dirty” state e.g. by
inserting a new model element and then deleting it via the "SeCMER" tab.

3.3 Foreseen Desirable Improvements

The prototype tool could potentially be improved through extension by other sets of
security patterns to automate the detection and handling of security violations in a
wider range of application scenarios. We plan also to realize a tighter integration with
additional modeling formalisms (Problem Frames, CORAS) and industrial tools e.g
DOORS-TREK.

The participating experts of the ATM workshop expressed an interest in a feature that
can give an estimate of the level of security based on the requirements model, even
when there are no violations conforming to the security patterns. Such a feature cannot
be provided with the current set of WP3 techniques and would require further research
before it could be integrated into the tool.

3.4 Conclusions

This document has presented SeCMER, a tool for managing evolving requirements. As
shown by the ATM-based illustrative scenario, the tool supports visual modeling of
security requirements. Additionally, argument models can be constructed manually to
investigate the satisfaction of security properties; the tool detects invalidated
arguments if the requirements model evolves. Finally, the tool performs continuous and
automatic pattern-based violation detection of security properties, with optional “quick
fix” corrective actions. Thus the tool integrates various ways of approaching security on
the level of early requirements, to coherently support a workflow conforming to the
SeCMER methodology (see D.3.2).

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 26/47

References

[1] The Eclipse Project: Eclipse Modeling Framework. http://eclipse.org/emf

[2] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and A. Ökrös,
"Incremental Evaluation of Model Queries over EMF Models", Model Driven Engineering
Languages and Systems, 13th International Conference, MODELS'10: Springer, 10/2010.

[3] F. Massacci, J. Mylopoulos, and N. Zannone, Computer-aided Support for Secure Tropos.
Automated Software Engineering. 14(3): p. 341-364, 2007.

[4] T. Tun, Y. Yu, R. Laney, and B. Nuseibeh, “Early Identification of Problem Interactions: A
Tool-Supported Approach,” in Requirements Engineering: Foundation for Software
Quality, vol. 5512, Springer Berlin / Heidelberg, pp. 74-88, 2009.

[5] T. Tun, Y. Yu, C. Haley, B. Nuseibeh, "Model-Based Argument Analysis for Evolving
Security Requirements," Secure System Integration and Reliability Improvement, pp. 88-
97, 2010 Fourth International Conference on Secure Software Integration and Reliability
Improvement, 2010.

[6] CASE Spec, URL: http://computing-research.open.ac.uk/trac/openre

[7] Dimensions RM, URL: http://www.serena.com/products/rm/index.html

[8] IBM Rational DOORS, URL: http://www-01.ibm.com/software/awdtools/doors/

[9] IBM Requisite Pro, URL: http://www-01.ibm.com/software/awdtools/reqpro/

[10] IMKS Integrity 2009, URL: http://www.mks.com/

[11] Geensoft Reqtify, URL: http://www.geensoft.com/en/article/reqtify

http://eclipse.org/emf

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 27/47

Appendix A. Tool Realization

In this Section we give an overview of the design choices behind the actual prototype
tool and the integration of the academic tools.

A.1. Architectural Overview
A prototype tool is realized as a set of Eclipse plug-ins written in Java (partly
generated), and models are represented in the Eclipse Modeling Framework (EMF [1]).
The components of the tool currently fall into these categories:

 Eclipse plug-ins of OpenPF (requirements engineering tool by OU [4]), including
(a) the implementation of the SeCMER conceptual model, (b) the
argumentation model and tools, as well as (c) the modeling tools for Problem
Frames (only limited synchronization is supported with the other formalisms as
of now);

 Si* (requirements engineering tool [3] by UNITN);

 traceability models to represent the relationship between corresponding model
elements in different languages, e.g. the SeCMER conceptual model and Si*;

 run-time platform components of EMF-INCQUERY (incremental EMF model
query engine by BME [2]) for change-driven transformations;

 model query plug-ins automatically generated from transformation specification
and Evolution Rules by the development-time tools of EMF-INCQUERY and
VIATRA2 (model transformation framework by BME);

 integration code developed solely for this tool, including User Interface
commands and the Java definition of the action parts of Evolution Rules.

The relationship of the most important model management components are depicted
on , focusing on the Si* and SeCMER models in particular, as well as the traceability
model established between them. User Interface components are omitted from this
diagram. See also Section 1 for a higher-level overview of what components and
modeling formalisms are involved.

All the involved EMF models are accessed through a common EMF ResourceSet and
edited solely through the corresponding TransactionalEditingDomain (from the EMF
Transaction API). Consequently, all modifications are wrapped into EMF Transactions,
including those carried out by manual editing through the User Interface (e.g. the Si*
diagram editor or the generic EMF tree editor) as well as changes performed by
automated mechanisms such as model transformation. As one of the benefits,
concurrent modifications are serialized and therefore conflict-free. Furthermore, the
commit process of the transactions provides an opportunity for triggering change-
driven actions.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 28/47

Figure 8. Architectural overview of model management components

A.2. Trigger mechanism
The incremental query mechanism provided by EMF-INCQUERY plays a key role in the
functionality of the tool. Incremental query evaluation code is generated automatically
at development time by EMF-INCQUERY, from a graph pattern-based declarative
description of EMF model queries. Through this incremental evaluation functionality,
Evolution Rules can be efficiently triggered by changes captured as graph patterns.
The implementation currently supports detecting the presence, appearance and
disappearance, but not the entire Graph Change Patterns formalism (see D.3.2).

The core triggering plug-in offers an Eclipse extension point for defining change-driven
rules. Multiple constituent plug-ins contribute extensions to active their respective set of
rules. The graph pattern-based declarative event/condition feature of the rules is
evaluated by the incremental graph pattern matcher plug-ins automatically generated
from the declarative description by EMF-INCQUERY. At the commit phase of each
transaction, the rules that are found to be triggered will be executed to provide their
reactions to the preceding changes. These reactions are implemented by arbitrary
Java code, and they are allowed to modify the model as well (wrapped in nested
transactions) and could therefore be reacted upon.

Currently, there are three groups of change-driven rules contributed to the extension
point:

 transformation rules that realize the on-the-fly synchronization between multiple
modeling formalisms,

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 29/47

 security-specific evolution rules that detect the appearance of undesired
security patterns, provide alerts on these problems and optionally offer
candidate solutions.

 rules for marking arguments as invalid when changes are inflicted on their
ground facts.

A.3. Transformation specification
The tool maintains a synchronizing transformation between Si* and the SeCMER
model. The challenge is to provide bi-directional synchronization with changes
propagated on the fly. Naturally the two languages have different expressive power,
therefore

(a) some concepts are not mapped from one formalism to the other or vice versa,

(b) some model elements may be mapped into multiple (even an unbounded
amount of) corresponding model elements in the other formalism, and finally

(c) it is possible that a single model element has multiple possible translations (due
to the source formalism being more abstract); one of them is created as a
default choice, but the other options are also accepted.

The following mappings define the transformation:

 There is a many-to-one correspondence between Si* Actors of the same name
and SeCMER Actors.

 There is a many-to-one correspondence between Si* Resources with the same
name and SeCMER Resources that are provided (thus eligible to be
represented in Si*).

 There is a one-to-one correspondence between the original copy of a Si*
Resource, owned by an Actor and not received through delegation, and the
SeCMER Provides Relationship from the corresponding Actor to the
corresponding Resource.

 Additional copies of a Si* Resource, owned by an Actor and received by
delegation but not delegated further, are mapped into SeCMER Consumes
Relationships from the corresponding Actor to the corresponding Resource.

 There is a many-to-one correspondence between Si* Tasks with the same
name and SeCMER Actions that are carried out (thus eligible to be represented
in Si*).

 There is a one-to-one correspondence between a copy of a Si* Task owned by
an Actor and not delegated further, and the SeCMER Carries Out Relationship
between the corresponding Actor and Action.

 There is a many-to-one correspondence between Si* Softgoals having the
same name and SeCMER Security Goals that are wanted (thus eligible to be
represented in Si*).

 There is a many-to-one correspondence between Si* Goals of the same name,
and SeCMER Goals that are wanted (thus eligible to be represented in Si*).and

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 30/47

are not Security Goals. A newly created Si* Goal is mapped by default into a
SeCMER Goal of type Goal proper (not any of its subtypes).

 There is a one-to-one correspondence between the orginial copy of a Si* Goal
or Softgoal owned by an Actor and not received by delegation, and the
SeCMER Wants Relationship between the corresponding Actor and Goal.

 There is a one-to-one correspondence between Si* ‘AND’ Compositions and
SeCMER And Decompositions between Actions or Goals, if both endpoints are
mapped.

 There is a one-to-one correspondence between Si* ‘OR’ Compositions and
SeCMER Or Decompositions between Actions or Goals, if both endpoints are
mapped.

 There is a one-to-one correspondence between a Si* MeansEnd Relation from
a Task to a Goal or Softgoal and the SeCMER Fulfils Relationship between the
corresponding Action and Goal, if both endpoints are mapped.

 There is a one-to-one correspondence between a Si* MeansEnd Relation from
a Resource to a Task or Goal and the SeCMER Consumes Relationship
between the corresponding Action / Requirement and Resource, if both
endpoints are mapped.

 There is a one-to-one correspondence between a Si* MeansEnd Relation from
a Task or Goal to a Resource and the SeCMER Produces Relationship
between the corresponding Action / Requirement and Resource , if both
endpoints are mapped.

 There is a one-to-one correspondence between a Si* ‘Custom’ Relation from a
Softgoal to a Resource / Task and the SeCMER Protects Relationship between
the corresponding Security Goal and asset, if both endpoints are mapped.

 There is a one-to-one correspondence between a Si* Delegation of Permission
Relation, pointing from a Resource owned by an Actor to a second Actor, and
the SeCMER Delegates Relationship with the first Actor as source, the second
Actor as target and the Resource as dependum, if all three endpoints are
mapped.

 There is a one-to-one correspondence between a Si* Delegation of Execution
Relation, pointing from a Task or Goal or Softgoal owned by an Actor to a
second Actor, and the SeCMER Delegates Relationship with the first Actor as
source, the second Actor as target and the Action or Goal as dependum, if all
three endpoints are mapped.

 There is a one-to-one correspondence between a Si* Trust of Permission
Relation, pointing from a Resource owned by an Actor to a second Actor, and
the SeCMER Trusts Relationship with the first Actor as source, the second
Actor as target and the Resource as dependum, if all three endpoints are
mapped.

 There is a one-to-one correspondence between a Si* Trust of Execution
Relation, pointing from a Task or Goal or Softgoal owned by an Actor to a
second Actor, and the SeCMER Trusts Relationship with the first Actor as

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 31/47

source, the second Actor as target and the Action or Goal as dependum, if all
three endpoints are mapped.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 32/47

Appendix B. User Manual

B.1. Installation
There are two possible ways to obtain the SeCMER tool. The first is a simple
installation process aimed at security engineers that only want to use the tool; the
second, more elaborate description is for developers who want to study or modify the
project sources.

B.1.1. Recommended Installation for End-Users
This distribution of the tool is targeted to run on a Windows machine with 32-bit Java. If
you use a different OS or 64-bit Java, you can deploy an Eclipse instance with the
necessary components yourself, based on the developer instructions in Section B.1.2.

Please download and extract the archive file at:

http://securechange.eu/sites/default/files/tools/secmer/deployed.7z

The folder deployed/ contains a Win32 copy of Eclipse Modeling 3.6.0 with all

components of the SeCMER tool. You can start the SeCMER tool by running
eclipse.exe. When it asks for a workspace directory, it is recommended to select the

folder runtime-SecMER/ that can be obtained as described in Section B.1.3.

B.1.2. Installation of Development Environment
This type of installation is only necessary if you plan to contribute to the source code of
the tool, or if you need to deploy an instance of the tool onto your preferred platform
(such as 64-bit Java or Mac OS X).

Please download and extract the archive file at:

http://securechange.eu/sites/default/files/tools/secmer/demonstrator.7z

Most versions of the bundle contain a Win32 copy of Eclipse Modeling 3.6.0 with all
necessary prerequisite components for the development of the SeCMER tool. You can
start the development Eclipse instance by running eclipse-3.6/eclipse.exe.

This Eclipse instance may be omitted for space considerations from some distributions
of the tool. If this folder is missing, or you work in an other OS or use 64-bit Java, you
can set up an appropriate instance of Eclipse yourself. Start by installing a
distribution of Eclipse 3.6 (Helios) that is appropriate on your system. Please also
install the feature SWTBot for Eclipse from its respective update site, as it is a

required dependency. Additionally, the following two folders (distributed with the
bundle) need to be copied into to the dropins/ subdirectory of your Eclipse 3.6

installation: hu.bme.mit.incquery.dropins/ (contains a snapshot of Viatra2 and

EMF-INCQUERY components) and open.pf.prerequisites.dropins/ (contains

prerequisite dependencies of OpenPF). In the supplied eclipse-3.6/ folder, these

http://securechange.eu/sites/default/files/tools/secmer/deployed.7z
http://securechange.eu/sites/default/files/tools/secmer/demonstrator.7z

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 33/47

dropins are already copied into place, so you do not need to do anything if you use a
Win32 environment.

When starting the development environment, the folder dev-workspace/ (also

contained in the archive bundle) should be selected as its workspace. The workspace
consists of the following Working Sets of projects:

 The Working Set OpenPF consists of a checked out copy of an SVN tagged

version of Open University's OpenPF.

 The Working Set Si*, on the other hand, contains a snapshot of UNITN's Sistar

tool. Some very slight alterations have been applied to fit the tool into the
framework (mostly related to sharing the EMF TransactionalEditingDomain

between tools).

 The Working Set CASE Tool contains the plug-in projects that constitute the

prototype SeCMER Tool responsible for the integration of the other tools. Its
goals involve providing traceability, synchronizing transformations and other
features (most notably incremental evaluation of security patterns).

 The Working Set Releng contains Eclipse Feature definitions that describe how

to make the tool installable.

The development eclipse instance has the Java Development Tools, the Eclipse Plugin
Development Environment and Viatra2 installed for the development of the SeCMER
CASE Tool. The Java and Viatra2 perspectives are made available for this purpose.

You can start debugging the prototype tool by selecting the "SecMER Demonstrator
Case Tool" launcher (should be default actually) from the dropdown menu of the

Debug button (green bug) on the toolar. Switching to the Java perspective might be
necessary for the Debug button to show up.

To deploy a stand-alone instance of the SeCMER tool, you should create a local
Eclipse Update Site of the SeCMER Tool components (the folder featuredeploy/ is

provided for this purpose). Use File/Export > "Plug-in Development"/"Deployable
features" to populate the update site folder from the current version of the code in the
workspace. Select all features in the dialog box, and specify this featuredeploy folder

as Destination/Directory.

You can then create a deployed instance of the tool (such as the one described in
Section B.1.1) by preparing a separate instance of Eclipse similar to the development
environment, including the two dropin folders indicated above; then adding this
featuredeploy/ folder as a local update site, and finally installing the SeCMER Case

Tool components from it.

B.1.3. Example Artifacts
To obtain the example models, please download and extract the archive file at:

http://securechange.eu/sites/default/files/tools/secmer/runtime-SeCMER.7z

The folder runtime-SecMER/ contains the Eclipse workspace of the tool prototype.

The project DemoCorner holds all the example artifacts that correspond to the Feature

Tour in Section 2. The file DemoCorner/before/requirements.secmertool is an

example model for the tool containing the pre-state (before state) of the evolution,

http://securechange.eu/sites/default/files/tools/secmer/runtime-SeCMER.7z

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 34/47

while DemoCorner/after/requirements.secmertool is a sample model containing

the post-state (after state) of the evolution. The SeCMER tool uses EMF models with
the .secmertool extension. These files references aspect models (SeCMER model,

Si*, OpenPF Arguments, more to come) from the aspect-models folder.

B.2. User Interface

B.2.1. Viewing and editing models with the SeCMER Tool
To start using the tool, open any file with the extension .secmertool, such as the ones

delivered as example artifacts (see Section B.1.3)

IMPORTANT NOTE: do NOT open directly any models in the aspect-models/

subfolder. Use the functionality provided by the SeCMER editor and exporters.

In the "SecMER" tab of the tree editor of the .secmertool EMF resource, you can

view the abstract representation of the contents of all associated models. Most users
can simply ignore this view. For advanced users, here is the structure of the
contents of this view:

 Within the .secmertool file proper (appearing under

"platform:/...something.../somefile.secmertool"), the element

"SecMER Integration Model" is responsible for gluing together the various other
models, and contains traceability information.

 Under "platform:/...something.../somefile.ontology.xmi", you can

find the SeCMER requirements model. What you see is actually the abstract
EMF model converted from the textual representation of the requirements
model.

 Under "platform:/...something.../somefile.argument", you can find the

argumentation model associated with the SeCMER requirements model. What
you see is actually the abstract EMF model transparently parsed from the
textual representation of the argumentation model.

 Under "platform:/...something.../somefile.tpd", you can view two

subtrees contained in the Si* file: the abstract Tropos Model, and the abstract
structure of the graphical diagram elements.

The tree editor can be used in conjunction with the Eclipse Properties View to
manipulated the abstract form of the SeCMER Requirements model.

For example, to create a “Protects” relationship between an existing Security Goal and an

Asset, right-click the “World” element in the subtree of “...ontology.xmi”, issue New Child >
Relationship, select the newly created element, and finally fill out its property sheet. This last

step requires the Properties View (can be opened by right-clicking the element and issuing Show
Properties View); Dependum should be left empty, Source should be set to the Security Goal

and Target should be set to the asset that it protects; finally Type should be set to “protects”.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 35/47

Figure 9. Tree editor of the abstract model

Figure 10. Si* diagram on the "Tropos" tab

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 36/47

The editor has two more tabs. The "Tropos" tab contains the Si* Tropos diagram
editor to show the graphical representation of the Si* aspect. This tab can be used as a
regular Si* editor. Users typically perform most of the requirement modeling using this
view, since modifications are automatically propagated between the abstract SeCMER
requirement model seen in the tree editor, and the Si* requirements model.

There are certain rare types of model elements, though, that are not represented in the
Si* syntax; none of them is particularly important for security analysis or the demo
scenario.

Finally, the "Argument" tab shows the argument diagram for the Argumentation
model associated with the requirements model.

Figure 11. Argument diagram on the “Argument” tab

B.2.2. Creating new models with the SeCMER Tool
New SeCMER models should be created using one of the “New SeCMER model”
wizards. Shortcuts for these wizards under the File > New menu item and under the

New toolbar button have been configured in the SeCMER perspective; and the wizards

are always available at File > New > Other... > SeCMER Tool regardless of the

selected perspective.

To create a .secmertool model from scratch, invoke the New SeCMER model from
scratch wizard. Select the location (container folder) of the model, and then specify a

file name. A new and empty SeCMER integrated model will be created, along with all
the aspect models in a separate folder.

To create a .secmertool model from a pre-existing Tropos / Si* model, invoke the New
SeCMER model from Tropos / Si* model wizard. Before providing the target

container and file name, an input Tropos model has to be selected. The resulting
.secmertool model will contain a copy of the specified Tropos model as one of its
aspects.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 37/47

Similarly, the New SeCMER model from .ontology file wizard creates a

.secmertool model, whose SeCMER abstract model aspect will be initialized

according to a SeCMER model in the .ontology textual syntax.

Figure 12. New SeCMER Model wizards

B.2.3. Exporting models from the SeCMER Tool
Aspect models should only be viewed and edited through the SeCMER editor; directly
manipulating the Aspect models is not supported. However, they can be exported from
the SeCMER model by right-clicking the .secmertool file in the Project Explorer,

and issuing an export command from the “SeCMER Tool” submenu.

Invoking the Export SeCMER model into .ontology file exports the requirements

model into a selected file with the .ontology textual syntax. Invoking Export Tropos
/ Si* model will export the Si* aspect into the selected .tpd file. Finally, Export

Argument Model extracts the argument model in the .argument textual syntax.

B.2.4. Detecting and fixing security violations
Some security properties can be effectively evaluated or approximated based on the
requirements model in a completely automated fashion. Each such detected security
violation shows up as a Warning marker in the “Problems” View of the Eclipse

Workbench (see Figure 13).

Default solutions or solution templates are also automatically suggested. Solutions for
a particular problem can be discovered by right clicking the appropriate Warning
marker in the “Problems” View, and then issuing “Quick fix”. A dialog will appear

listing possible ways to resolve the violation in question; they can be selected and
executed automatically (see Figure 14).

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 38/47

Figure 13. Detected security issues

Figure 14. Automatically suggested solutions

B.2.5. Arguments to requirements traceability
SeCMER currently supports two kinds of traceability information that connect the
Argument model and the Requirements model:

 The ground facts or evidence of an argument (typically an empty argument,
i.e. fact) are Requirements model elements about which the argument states a
proposition. Many arguments (typically the composite ones) don’t have ground
facts.

 Some top-level arguments may have supported goals in the requirements
model. If the argument is valid, then the goals can be considered satisfied.

These traceability links can be established by right-clicking an argument box in the
Argument Diagram, and issuing either Ground facts in SeCMER model… or

Supported goals in SeCMER model… from the context menu. A dialog will appear,

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 39/47

with two panes. The pane on the left shows requirements model elements / goals that
can be potentially selected as ground facts / supported goals, while the pane on the
right lists those that are currently selected as such. To add a ground fact / supported
goal, select it from the list of choices (left pane), and push “Add”. To remove a

previously chosen element, select it on the right pane, and hit “Remove” (see Figure

15).

Figure 15. Selecting ground facts for Argument F10

The point of maintaining traceability of supported goals is that reports of security
violations are suppressed from the Problems View if the violated security goal is
supported by an argument. In other words, automatic problem detection is overridable
by manually verified arguments.

While argumentation is a powerful framework for early-stage analysis of security
properties based on the requirements model, by default it considers a single state of
the model. The challenge is in detecting arguments that have potentially been
invalidated by changes, and revisiting these arguments to reflect the evolution, while
no costly revision process is required for unaffected arguments. This is the purpose of
keeping the traceability information on ground facts, so that model changes involving
the ground facts may trigger a notification that alerts the user about the possibility that
the argument may have become invalid due to the change.

Figure 16. Detecting the invalidation of an argument

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 40/47

Appendix C. Report on initial industrial
evaluation of the EMF-INCQUERY tool

In the context of SecureChange, Thales evaluated the applicability of the EMF-
INCQUERY framework to its industrial context.

C.1. Industrial context
In order to build an architecture of a software intensive system, many stakeholders
contribute to the description of the system architecture. Following a model-based
engineering approach, the different stakeholders will use modelling tools to describe
the architecture and analysis tools to evaluate some properties of the architecture.

Thales has defined a model-based architecture engineering approach for software
intensive systems, the ARCADIA method. It defines a model organization of five
abstraction levels (viewpoints) for mainstream engineering and a set of other
viewpoints for speciality engineering, depending typically on non-functional constraints
applied on the system to be engineered. The views conforming to these viewpoints are
used by different stakeholders during the system definition process. Therefore,
techniques and tools to manage the consistency of an information bulk made of several
views on a system are necessary. The ARCADIA method adopts a viewpoint-based
architectural description such as described in the conceptual foundations of ISO/IEC
42010, Systems and Software Engineering - Architecture Description.

This ongoing standard attempts to specify the manner in which architecture
descriptions of systems are expressed. This standard provides key concepts and their
relationships to document an architecture. Its key concepts are Architecture
Framework, Architecture Description, Viewpoint, View and Correspondence rule. An
architecture description aggregates several Architecture Views. A view addresses one
or more system concerns that are relevant to some of the system’s stakeholders. A
view aggregates one or more Architecture Models. Each view is defined following the
conventions of an Architecture Viewpoint. The viewpoint defines the Model Kinds used
for that view to represent the architecture addresses stakeholders’ concerns.

As stated in this standard, in architecture descriptions, one consequence of employing
multiple views is the need to express and maintain the consistency between these
views. The standard introduces the Correspondence Rule concept that states a
constraint that must be enforced on a correspondence to express relation between
architecture description elements (Views, Architectural Model, etc.). Correspondences
can be used to express consistency, traceability, composition, refinement and model
transformation, or dependencies of any type spanning more than a single model kind.

Considering this industrial context, it can be considered that there are 3 major types of
model consistency to manage:

 The first one aims at ensuring that a model conforms to its meta-model, i.e. that
it addresses the well-formedness of the model. Since the modelling

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 41/47

environment is DSL based (i.e. not profile based using a general purpose
language), the well-formedness can be de facto ensured.

 The second one aims at ensuring that a model conforms to a coherent set of
engineering rules; i.e. that the engineer conforms to a defined engineering
method; in order to capitalize and reuse standard and domain specific
engineering best practices.

 The third one aims at ensuring information consistency between distributed
engineering environments, i.e. when there is not a unique centralized data
reference. The main purpose here is to ensure coherency of all engineering
activities across engineering domains, typically mainstream architecting and
speciality engineering activities.

C.2. Objectives
Our experimentation focused on the second type of model coherency which consists in
determining if a given configuration of set of views (models) are coherent with a set of
consistency rules or not. This study consisted in detecting if the inconsistencies
between views conformed to the engineering meta-model defined by Thales and
composed of a set of 20 meta-models and about 400 meta-classes involved in the five
viewpoints defined in ARCADIA. The purpose of this study was assessing the benefits
of EMF-INCQUERY when compared to other environments: the traditional Java over
EMF one, and the incremental Prolog-based Praxis. In terms of benefits, we studied
the usability of the approach.

We validated the approach by translating a set of existing consistency rules initially
implemented in Java over EMF into EMF-INCQUERY.

C.3. Environment
Our experiment environment consisted of the EMF-INCQUERY engine and a System
engineering tool dedicated to this industrial context. This latter tool has been built on
top of the Eclipse Obeo Designer tool and exposes a dedicated engineering language
providing user-friendly ergonomics.

It allows engineers to define the architecture description of a software system by
providing the five following views:

 The “Operational Analysis” model level, where the customer needs are defined
and/or clarified in terms of tasks to accomplish by the System/Software, in its
environment, for its users.

 The “System Analysis” model level, that provides a “black box” view of the
System where the System limits are defined and/or clarified in terms of actors
and external interfaces, the System capabilities and functional and non-
functional needs and expectations; allowing to identify the more
constraining/impacting requirements.

 The “Logical Architecture” model level, which provides a “white box” view of the
System. It defines a technical and material independent decomposition of the
System into components, and where the non-functional constraints are refined
and allocated.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 42/47

 The “Physical Architecture” model level, which is defined by the structuring
architecture of the System. It takes into account non-functional constraints,
reuses legacy assets and applies product policies.

 The “EPBS (End Product Breakdown Structure)” model level is an
organizational view identifying the configuration items for development
contracts and further Integration, Verification and Validation.

The EMF-INCQUERY consistency engine was integrated on top of this tool. The engine
executes a set of queries representing consistency rules (specified in a VTCL file) and
returns the list of detected inconsistencies to the user. Figure 17 shows a screenshot of
the modelling environment and a view of the VTCL file containing the consistency
rules.

Figure 17. EMF-INCQUERY consistency rules

C.4. Results
The lack of support for EMF derived features in EMF-INCQUERY was a major issue in
our experimentation. Unfortunately our industrial meta-model uses derived features
extensively. As a result, none of the consistency rules could be translated without
running into one of them and, therefore, could not be run by the EMF-INCQUERY
engine.

On the other hand, other merits of EMF-INCQUERY could be assessed. The declarative
language, similar in expressive power and style to the Praxis Rules language used by
Praxis, is well adapted to the specification of inconsistencies when compared to an
imperative language like Java. In particular, such a general purpose imperative
language cannot support incremental verification. In addition, Prolog-based
approaches like Praxis suffer from performance limitations that EMF-INCQUERY
overcomes at the cost of a higher memory usage. This should alleviate the
performance issues that Thales ran into on large models with Praxis.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 43/47

Figure 18. Thales SWOT analysis of EMF-INCQUERY

Shortly after the end of Secure Change, BME has planned to release a version of
EMF-INCQUERY with a limited support for derived features, which Thales will
investigate.

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 44/47

Appendix D. Report on Second ATM
Workshop

(see attachment)

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 45/47

Appendix E. A Tool for Managing
Evolving Security Requirements

 (see attachment)

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 46/47

Appendix F. SeCMER: A Tool to Gain
Control of Security Requirements
Evolution

 (see attachment)

D.3.4 Proof-of-Concept CASE Tool| version 2.12 | page 47/47

Appendix G. Orchestrating Security and
System Engineering for Evolving
Systems

 (see attachment)

